- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Abbasalipour, Amin (2)
-
Alsaleem, Fadi (2)
-
Jafari, Roozbeh (2)
-
Emad-Ud-Din, Muhammad (1)
-
Emad-Un-Din, Muhammad (1)
-
H Hasan, Mohammad (1)
-
Hasan, Mohammad H. (1)
-
Nikfarjam, Hamed (1)
-
Pourkamali Anaraki, Siavash (1)
-
Pourkamali, Siavash (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The goal of this paper is to provide a novel computing approach that can be used to reduce the power consumption, size, and cost of wearable electronics. To achieve this goal, the use of microelectromechanical systems (MEMS) sensors for simultaneous sensing and computing is introduced. Specifically, by enabling sensing and computing locally at the MEMS sensor node and utilizing the usually unwanted pull in/out hysteresis, we may eliminate the need for cloud computing and reduce the use of analog-to-digital converters, sampling circuits, and digital processors. As a proof of concept, we show that a simulation model of a network of three commercially available MEMS accelerometers can classify a train of square and triangular acceleration signals inherently using pull-in and release hysteresis. Furthermore, we develop and fabricate a network with finger arrays of parallel plate actuators to facilitate coupling between MEMS devices in the network using actuating assemblies and biasing assemblies, thus bypassing the previously reported coupling challenge in MEMS neural networks.more » « less
-
Hasan, Mohammad H.; Alsaleem, Fadi; Abbasalipour, Amin; Pourkamali Anaraki, Siavash; Emad-Un-Din, Muhammad; Jafari, Roozbeh (, 14th International Conference on Micro- and Nanosystems (MNS))null (Ed.)Abstract The size and power limitations in small electronic systems such as wearable devices limit their potential. Significant energy is lost utilizing current computational schemes in processes such as analog-to-digital conversion and wireless communication for cloud computing. Edge computing, where information is processed near the data sources, was shown to significantly enhance the performance of computational systems and reduce their power consumption. In this work, we push computation directly into the sensory node by presenting the use of an array of electrostatic Microelectromechanical systems (MEMS) sensors to perform colocalized sensing-and-computing. The MEMS network is operated around the pull-in regime to access the instability jump and the hysteresis available in this regime. Within this regime, the MEMS network is capable of emulating the response of the continuous-time recurrent neural network (CTRNN) computational scheme. The network is shown to be successful at classifying a quasi-static input acceleration waveform into square or triangle signals in the absence of digital processors. Our results show that the MEMS may be a viable solution for edge computing implementation without the need for digital electronics or micro-processors. Moreover, our results can be used as a basis for the development of new types of specialized MEMS sensors (ex: gesture recognition sensors).more » « less
An official website of the United States government
